冯元

冯元

教授

清华大学

研究概况

量子模型检测:经典模型检测是对顺序程序、并发协议、硬件系统进行形式化验证的一种重要技术。由于其可机械化和可以提供诊断信息,在工业界得到了广泛应用。我们提出了两种不同的量子马尔代夫链模型,并系统发展了线性和分支两种量子时序逻辑公式的模型检测方法。2021年,受剑桥大学出版社邀请,我们出版了《Model Checking Quantum Systems: Principles and Algorithms》,对量子模型检测这一新兴的研究方向,特别是我们课题组在这方面的工作进行了系统梳理。这是量子模型检测领域第一本学术专著。

量子程序验证:Hoare逻辑是程序验证的逻辑基础,在程序设计方法学中处于核心地位。Hoare逻辑通过为命令式编程语言的所有程序结构定义合适的公理和推理规则,使得该语言下程序的正确性都可以进行(部分)自动化证明。我们建立了含经典变量的量子Hoare逻辑,证明其可靠性和相对完备性,并在文献中第一次成功的利用Hoare逻辑验证完整的Shor算法(ACM TQC 2021)。最近,我们进一步利用这种技术分别为不共享变量的量子并行程序(TCS 2022)、只含经典通信的分布式量子程序(ACM TOCL 2022)、含不确定性构造的量子程序(ASPLOS’23)设计了Hoare逻辑系统,并证明了它们的可靠性和相对完备性。

量子通信并发系统:量子通信和密码是量子信息领域目前最为成熟、在某些方面已经获得实际应用的技术。为了形式化描述量子通信网络、为量子网络软件和通信协议的形式化验证奠定理论基础,我们提出了量子进程代数qCCS (Information and Computation 2007)。更重要的是,我们成功的找到了一种刻画量子进程等价性的互模拟关系,并证明了其对于各种进程构造的同余性(POPL’11, ACM TOPLAS 2012)。我们后续的一系列工作,包括符号互模拟 (ACM TOCL 2014)、开互模拟(TCS 2012)和基于分布的互模拟(CONCUR 2015)等,极大的丰富了qCCS的基础理论,也增强了其描述和验证实际量子通信系统的能力。

研究方向
  • 量子模型检测

  • 量子程序验证

  • 量子通信并发系统

教育经历
  • 本科 · 清华大学应用数学系

  • 博士 · 清华大学计算机科学与技术系

最新发表

(2025). Refinement calculus of quantum programs with projective assertions. ACM Trans. Softw. Eng. Methodol..

引用 DOI URL

(2025). On the Trainability and Classical Simulability of Learning Matrix Product States Variationally. Proceedings of the AAAI Conference on Artificial Intelligence.

引用 DOI URL

(2024). Dynamic Transitive Closure-based Static Analysis through the Lens of Quantum Search. ACM Trans. Softw. Eng. Methodol..

引用 DOI URL

(2024). Equivalence Checking of Parameterised Quantum Circuits.

引用 arXiv URL

(2023). Model Checking for Probabilistic Multiagent Systems. Journal of Computer Science and Technology.

引用 DOI URL

(2023). Alternating Layered Variational Quantum Circuits Can Be Classically Optimized Efficiently Using Classical Shadows. Proceedings of the AAAI Conference on Artificial Intelligence.

引用 DOI URL

(2023). Two Views of Constrained Differential Privacy: Belief Revision and Update. Proceedings of the AAAI Conference on Artificial Intelligence.

引用 DOI URL

(2023). Decision Diagrams for Symbolic Verification of Quantum Circuits. 2023 IEEE International Conference on Quantum Computing and Engineering (QCE).

引用 DOI

(2023). Single-Qubit Gates Matter for Optimising Quantum Circuit Depth in Qubit Mapping. 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD).

引用 DOI

(2023). Supervised Learning Enhanced Quantum Circuit Transformation. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

引用 DOI

(2023). Verification of Nondeterministic Quantum Programs. Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 3.

引用 DOI URL

(2022). A Tensor Network based Decision Diagram for Representation of Quantum Circuits. ACM Trans. Des. Autom. Electron. Syst..

引用 DOI URL

(2022). Quantum Circuit Transformation: A Monte Carlo Tree Search Framework. ACM Trans. Des. Autom. Electron. Syst..

引用 DOI URL

(2022). A proof system for disjoint parallel quantum programs. Theoretical Computer Science.

引用 DOI URL

(2022). Equivalence Checking of Dynamic Quantum Circuits. Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design.

引用 DOI URL

(2022). Formal semantics of a classical-quantum language. Theoretical Computer Science.

引用 DOI URL

(2021). Quingo: A Programming Framework for Heterogeneous Quantum-Classical Computing with NISQ Features. ACM Transactions on Quantum Computing.

引用 DOI URL

(2021). Symbolic Reasoning About Quantum Circuits in Coq. Journal of Computer Science and Technology.

引用 DOI URL

(2021). Qubit Mapping Based on Subgraph Isomorphism and Filtered Depth-Limited Search. IEEE Transactions on Computers.

引用 DOI

(2020). A monte carlo tree search framework for quantum circuit transformation. Proceedings of the 39th International Conference on Computer-Aided Design.

引用 DOI URL

(2020). Quantum Circuit Transformation Based on Simulated Annealing and Heuristic Search. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

引用 DOI

(2018). Model Checking Probabilistic Epistemic Logic for Probabilistic Multiagent Systems. Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI-18.

引用 DOI URL

(2017). Model Checking Omega-regular Properties for Quantum Markov Chains. 28th International Conference on Concurrency Theory, CONCUR 2017, September 5-8, 2017, Berlin, Germany.

引用 DOI

(2017). Bisimulations for probabilistic linear lambda calculi. 2017 International Symposium on Theoretical Aspects of Software Engineering (TASE).

引用 DOI

(2017). Probabilistic bisimilarity as testing equivalence. Information and Computation.

引用 DOI URL

(2017). ProEva: Runtime Proactive Performance Evaluation Based on Continuous-Time Markov Chains. 2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE).

引用 DOI

(2016). An Iterative Decision-Making Scheme for Markov Decision Processes and Its Application to Self-adaptive Systems. Fundamental Approaches to Software Engineering.

引用

(2016). Asymptotic Perturbation Bounds for Probabilistic Model Checking with Empirically Determined Probability Parameters. IEEE Transactions on Software Engineering.

引用 DOI

(2016). Verify LTL with Fairness Assumptions Efficiently. 2016 23rd International Symposium on Temporal Representation and Reasoning (TIME).

引用 DOI

(2015). On hybrid models of quantum finite automata. Journal of Computer and System Sciences.

引用 DOI URL

(2015). QPMC: A Model Checker for Quantum Programs and Protocols. FM 2015: Formal Methods.

引用

(2014). Perturbation Analysis in Verification of Discrete-Time Markov Chains. CONCUR 2014 – Concurrency Theory.

引用

(2013). Model checking quantum Markov chains. Journal of Computer and System Sciences.

引用 DOI URL

(2013). Quantum Information-Flow Security: Noninterference and Access Control. 2013 IEEE 26th Computer Security Foundations Symposium.

引用 DOI

(2013). Reachability Analysis of Recursive Quantum Markov Chains. Mathematical Foundations of Computer Science 2013.

引用

(2013). Reachability Probabilities of Quantum Markov Chains. CONCUR 2013 – Concurrency Theory.

引用

(2013). Verification of quantum programs. Science of Computer Programming.

引用 DOI URL

(2012). Quantum programming: From theories to implementations. Chinese Science Bulletin.

引用 DOI URL

(2012). Open Bisimulation for Quantum Processes. Theoretical Computer Science.

引用

(2011). A Flowchart Language for Quantum Programming. IEEE Transactions on Software Engineering.

引用 DOI

(2011). Bisimulation for quantum processes. Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

引用 DOI URL

(2009). Characterizing Locally Indistinguishable Orthogonal Product States. IEEE Transactions on Information Theory.

引用 DOI

(2009). Distinguishability of Quantum States by Separable Operations. IEEE Transactions on Information Theory.

引用 DOI

(2008). Parameter Estimation of Quantum Channels. IEEE Transactions on Information Theory.

引用 DOI

(2006). Some Issues in Quantum Information Theory. Journal of Computer Science and Technology.

引用 DOI URL

(2006). Partial recovery of quantum entanglement. IEEE Transactions on Information Theory.

引用 DOI

(2005). Catalyst-assisted probabilistic entanglement transformation. IEEE Transactions on Information Theory.

引用 DOI